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MATHEMATICS EDUCATION RESEARCH SHOULD 
COME MORE OFTEN WITH BREAKING NEWS 

 
Marja van den Heuvel-Panhuizen 

Freudenthal Institute for Science and Mathematics Education, Utrecht University 
 
 

I feel it as a very great honor to be selected for the Svend Pedersen Lecture Award and I 
would like to thank the Department of Mathematics and Science Education of Stockholm 
University for showing interest in my work and evaluating it in such a positive way that it is 
worthy of receiving this award named after Svend Pedersen who is so important for you in 
Sweden in the field of science education research – and I assume this also includes 
mathematics education research. In particular, I appreciate Svend Pedersen’s effort to 
incorporate results from education research into the curricula of teacher education and give 
teachers and teacher educators access to results from education research. 
 
 

1. SOME REFLECTIONS ON THE WORK OF SVEND PEDERSEN 
AS AN INTRODUCTION 

 
When I recently read a number of articles coauthored by Svend Pedersen I actually 

experienced what this “given access to research findings” really means. I was truly moved by 
the clearness and cogency of these writings. These are the kinds of articles that the education 
field needs to make informed educational decisions. The findings reported in these articles 
have direct consequences for teaching. When you as a teacher are reading these articles, you 
immediately know what to do in your classroom the next day. 

For example, in an article written by Molander, Pedersen, and Norell (2001) about deaf 
pupils’ reasoning on scientific phenomena it was unmistakably revealed why deaf children 
may have difficulties in learning science in school. They do not have experiences like hearing 
children have with the popularized version of science through media, such as science 
programs on television. Through these media, although they may be short of scientific depth, 
hearing children have already encountered scientific terminology and explanations outside the 
school context; this, among other things, can generate children’s interest in “how things 
work”. This opportunity that hearing children have is lacking for deaf children, whose initial 
encounters with science will mostly take place in school, and from a stricter scientific 
perspective. Therefore, the authors of the article emphasize that instruction for deaf and hard-
of-hearing students must bring informal science into the school context and must offer 
students opportunities to connect scientific reasoning to pre-instructional reasoning. 

In another article, Pedersen and his coauthors Molander and Halldén (Molander, Halldén, 
& Pedersen, 2001) proved convincingly how important it is to take into account the setting in 
which students have to explain and interpret particular phenomena when investigating 
students’ understanding of scientific concepts. Asking students to describe what happens 
when a glass is turned upside down into water, leads to different levels of reasoning 
depending on the setting in which this question is asked and the equipment that is used for 
presenting the question. Therefore, when teachers – or others – are designing tasks for science 
lessons they should be very conscious of whether or not to use laboratory equipment. As 
Pedersen and his colleagues have shown, specialized materials from the scientific domain 
which are common in scientific laboratory do not function as appropriate cues to elicit a 
student’s reasoning as familiar materials from the life-world domain would. 
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My first thought after reading these articles was that the conclusions and 
recommendations of these studies sound very familiar to me. Reading these articles felt like 
coming home. In the Netherlands, in the early 1970s, Freudenthal and his colleagues from the 
Wiskobas group – of which Adri Treffers was a very prominent member – started to revise 
the then prevailing Dutch mathematics education which had a very mechanistic character and 
in which teaching directly began at a formal, symbolic level. Freudenthal and the Wiskobas 
group developed a new approach to mathematics education in which the idea of “mathematics 
in context” played a crucial role. This approach was later called “Realistic Mathematics 
Education” (RME). One of its characteristics is that children are offered rich contextual 
problems in which they can develop mathematical concepts and procedures for carrying out 
mathematical operations. 

My second thought after reading the articles in which Svend Pedersen was involved, was: 
(1) Do Swedisch teachers know – and do their colleagues in other countries know – that 
teaching science to deaf children should start with giving them access to the popularized 
version of science, and keeping the textbooks with the scientific perspective closed for some 
time? (2) And do teachers know that laboratory equipment can hinder children’s first 
scientific thinking, and that it is better to use equipment that is familiar to them; for example, 
that it is better to use a drinking glass than a test tube? 

 
In fact, these questions brought me to the somewhat provocative title of my lecture. 

Findings of education research – at least when they are worthwhile enough – should be 
communicated more explicitly to teachers. And why not as breaking news? I think it would be 
in the spirit of Svend Pedersen. We have to ask ourselves: Are teachers really aware of the 
importance of a popular, informal science basis and the use of ordinary objects from daily life 
when we want students to bring to scientific thinking? And if not, who will tell them these 
things? Of course, when teachers attend in-service courses and read professional journals they 
can learn about them. But this is not enough. A broad societal basis is needed to support the 
implementation of these new findings in school. This means that parents and education 
policymakers should also know about these findings. However, I am afraid they have never 
heard of them. And this is not a surprise, because findings of education research only rarely 
appear in newspapers or in the news on radio and television. In other disciplines, however, 
publication of findings is very common. See, for example, what I found in Dutch newspapers 
and later could trace on the internet: 

(1) A team of researchers at the University of Sussex found that, in colonies of Jatai bees, 
some are born soldiers. Until now such a caste system was unknown in bees. 

(2) A team of researchers from Louisiana State University found the world’s tiniest 
vertebrate in the New Guinea rainforest. It is a frog with an average adult size of 7.7 mm in 
length, less than half the diameter of a U.S. dime. 

(3) The Scientific American’s rubric ‘Image of the Week’ recently included a 
topographic map of the Italian Dolomites together with a stratigraphic column showing layers 
of a cave. According to the author of this Image of the Week message, this work, dating from 
1739, is maybe the oldest figure of this kind. While looking at this drawing, we may think, 
why is there never a drawing by a student showing a clever solution as the image of the week? 

(4) Finally, the exception of the rule. Sometimes, mathematics education is also breaking 
news, as was the case with the research of psychologist Susan Goldin-Meadow at the 
University of Chicago. She found that gesturing helps students develop new ways of 
understanding mathematics. 

 
Although announcing results from research in the public domain is very common in all 

kinds of disciplines, it is not in ours: the didactics of mathematics – or taking it more broadly 
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– the didactics of science. And why this is not the case? Do we not have news that deserves 
the label breaking news? I think we have. For some teachers – and even more for parents, 
school administrators, members of parliament and so on – it will be a paradigm shift to 
introduce children in school to science by abandoning the science equipment and using 
ordinary objects from daily life to bring students to scientific thinking. Breaking news with 
new findings from education research presented in a concise and clear way with convincing 
examples and data that prove the findings can inform a professional audience as well as the 
general public. In the Netherlands, we have lately learned how crucial it is to keep the public 
thinking about education aligned with the professional thinking. However, that is another 
topic that occupies my mind, but that I will not address now (more about this topic can be 
found in Van den Heuvel-Panhuizen, 2010). 
 

For this lecture I take the opportunity – in the spirit of Svend Pedersen – to share with 
you some research findings which I think everybody involved in education, and in particular 
in primary school mathematics education, should know. Both studies have been carried out at 
the Freudenthal Institute of Utrecht University. 

The first finding is about reading picturebooks to kindergartners (4- to 6-year-olds) to 
support their learning of mathematics. The study is part of the picture book project, called 
PICO project (which stands for PIcture books and COncept development MAthematics), in 
which I collaborate with Alexander Robitzsch, a colleague whom I know from my work at 
IQB in Berlin and who is now in Austria at the Bundesinstitut für Bildungsforschung, 
Innovation & Entwicklung. The second person who is very important for this project is Iliada 
Elia, who is a lecturer at Cyprus University and who is working with me in several early 
childhood studies. Furthermore, two PhD-students have been involved in the PICO project. 

The second finding that I will share with you is from the IMPULSE project (which stands 
for Inquiring Mathematical Power and Unexploited Learning of Special Education Students). 
In this project I work with my PhD-student Marjolijn Peltenburg and again with Alexander 
Robitzsch. The study I will present here is about whether or not students in special education 
who are weak in mathematics can apply alternative methods for solving subtraction problems. 
 
 

2. USING PICTUREBOOKS TO SUPPORT KINDERGARTNERS’ LEARNING OF 
MATHEMATICS 

 
The picturebook study has shown that reading picturebooks to kindergarten classes: 
• has educational potential for kindergartners’ learning of mathematics 
• is an effective whole-class activity 
• is effective for children with different background characteristics 
• is most gainful for the mathematical development of girls. 
I think these are reasons enough for a news alert. 

 
Before providing you with evidence for these findings I will give you some background 

information about using picturebooks for teaching mathematics in kindergarten classes. 
 
2.1 Using picturebooks for teaching mathematics – some background information 
 

For many children between the ages of four and six kindergarten is the first institutional 
educational setting in which they come across school subjects, including mathematics. The 
teaching of mathematics to children of such a young age already has a long history. In a way, 
we can say that it dates from 1631 when Comenius published his book School of Infancy in 
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which he emphasized the importance for young children to observe and manipulate with 
objects, and in which he stimulated the creation of mathematics programs for young children. 
He even used a picturebook, called Orbis Pictus for assisting children to make impressions in 
the mind. Here a page of this book is shown which explains several forms of wind: (1) a cool 
breath of fresh air; (2) a stronger wind; (3) a storm that throws down trees; (4) a whirlwind 
that rotates; (5) an underground wind that causes an earthquake; (6) an earthquake that causes 
gaps in the earth and the falling down of houses. 

 
Returning to our days, we can say that from the 1990s on linking mathematics instruction 

to children’s literature has become increasingly popular for a variety of reasons. For example, 
it was recognized that children’s literature can motivate students, connect mathematics to 
emotions, and provoke interest. The standards published by the National Council of Teachers 
of Mathematics (NCTM, 2000) gave a strong boost to the use of picturebooks in kindergarten 
by recommending the use of children’s story books as an approach for introducing 
mathematical ideas. 

These recommendations also received empirical support. Several studies investigated the 
effect of reading books to young children on their learning of mathematics. However, in most 
of these studies the book reading sessions in class were followed by other activities such as 
playing with story-related (mathematical) materials (Hong, 1996; Jennings, Jennings, Richey, 
& Dixon-Krauss, 1992; Young-Loveridge, 2004), singing mathematical rhymes (Young-
Loveridge, 2004) or composing geometrical puzzles (Casey, Erkut, Ceder, & Mercer Young, 
2008). 

Most of these studies show positive effects of the combination of book reading and book-
related activities on children’s mathematical development. In particular, the studies found a 
positive effect on kindergartners’ mathematics achievement (Jennings et al., 1992; Young-
Loveridge, 2004), their attitude towards mathematics (Hong, 1996; Jennings et al., 1992), and 
their use of mathematical vocabulary (Jennings et al., 1992). 
 
2.2 The setup of our picturebook study 
 

Although the previously mentioned effect studies indicated that using children’s literature 
might be a promising avenue in mathematics education, most of these studies just used the 
picturebooks as an introduction to a mathematics lesson or activity and did not inform us 
about the power of the picture book itself to support the kindergartners’ understanding of 
mathematics. Thus, we decided to do a study on the effect of the book reading itself, i.e. 
without inclusion of additional (book-related) mathematical activities. 

Our main research questions were: 
(1) Can an intervention involving picturebook reading enhance kindergartners’ 

mathematical understanding? 
(2) What is the relationship between the intervention effect and characteristics of 

kindergartners, including kindergarten year, age, gender, mathematics and language ability, 
home language, and socio-economic status? 
 
2.2.1 Research design 
 

To answer the research questions a classroom experiment was carried out with a pretest-
posttest-control-group design and a picturebook reading program as an intervention. In the 
control group the teachers followed the regular program for mathematics and picturebook 
reading. We came to the sample by first looking for nine pairs of schools in the Utrecht area 
which were similar with respect to urbanization level, school size and the socio-economic 
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status (SES) of the school population. Then, of each school one kindergarten class was 
randomly assigned to the experimental or the control group. This resulted in 
nine experimental and nine control kindergarten classes. The classes were all mixed classes 
consisting of children who were in their first year of kindergarten (K1) (4- to 5-year-olds) and 
children in their second year of kindergarten (K2) (5- to 6-year-olds). 
 
2.2.2 Participants 
 

In total there were 384 children involved in the study, of which 199 children in the 
experimental group (106 boys and 93 girls). Of that experimental group 84 were in K1 and 
115 in K2. The average age at the time of the pretest was 5 years and 3 months. Of the 199 
children, 171 had Dutch as their home language, and 176 children had an average or higher 
SES. 

The control group consisted of 185 children (95 boys and 90 girls), of whom 66 were in 
K1 and 119 in K2. The average age at the time of the pretest was 5 years and 4 months. Of the 
185 children, 164 children had Dutch as their home language and 161 children had an average 
or higher SES. 
 
2.2.3 Assessment instruments 
 

The mathematics performance of the children was measured by a project test and a 
standardized test. The project test, called the PICO test, contains 42 multiple-choice items 
split up over two booklets. Every item covers one page and contains a large illustration 
depicting the situation that the question is about and four small illustrations that represent the 
possible answers; for example, an item shows a front view of a sitting mouse; the teacher 
asks: “How would Mouse look if you looked down on him like a bird?” After a test item is 
read aloud to the children, they can answer it by underlining the correct answer. 

The standardized test used to measure children’s general mathematical ability was the so-
called Cito test ‘Ordering’. The Cito test ‘Language for Kindergartners’ was used to measure 
the kindergartners’ language skills. 
 
2.2.4 Picturebook program 
 

The books used in the intervention are picturebooks, by which we mean books in which 
the illustrations are essential for telling the story, although they may contain text as well 
(Arizpe & Styles, 2003; Nicolajeva & Scott, 2000). All books are trade books of high literary 
quality which were not purposely written for teaching mathematics, but which even so have 
mathematics-related content and characteristics that may support the learning of mathematics. 
These learning-supportive characteristics were earlier identified by a literature review and an 
expert consultation. A paper about this sub-study is in press (see Van den Heuvel-Panhuizen 
& Elia, in press). To cover a rich variety of mathematical domains, we chose picturebooks 
dealing with number, measurement, and geometry. In total, the picturebook reading program 
consisted of 24 picturebooks which were read aloud in class by the teachers over twelve 
consecutive weeks (2 books every week). 

To inform the teachers on how to read the picturebooks, we developed a reading key for 
every book, describing for each book page how it should be read. The reading guidelines are 
suggesting teacher behavior like (1) asking oneself a question out loud about the mathematics, 
(2) playing dumb, and (3) showing an inquiring expression. In general, the reading keys 
requested the teachers to maintain a reserved attitude and not to take each aspect of the story as 
a starting point for a class discussion, since lengthy or frequent intermissions could break the 
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flow of being in the story and consequently diminish the story’s own power to contribute to the 
mathematical development of the children. The leading principle in the development of the 
reading keys was to use the book’s potential and “let the book do the work”. 
 
2.3 Some classroom impressions 
 

Now I will show you some snapshots from the book-reading sessions which were taken 
from the pilot phase of the project. 
 
2.3.1 Asking oneself a question 
 

The picture book 22 Wezen [22 Orphans] is about twenty-two parentless children who 
live in an orphanage. On pages 5 and 6 (see Figure 1) the stern lady principal takes the 
children to bed. In the dormitory, eight double-decker beds are visible. The lady principal’s 
huge body blocks the view on the other beds.  
 

 
Figure 1. Pages 5 and 6 of the picture book 22 Wezen [22 Orphans]. 

 
While looking at this picture the teacher asked herself out loud: “Is there room for 

everybody?” Some children thought there would be enough sleeping-places; others rejected 
this, which made children count the beds. In doing so, different strategies were used, 
including counting the sleeping-places separately or taking the double-deckers as a unit. Some 
children made clever use of the structure of the double-deckers; they counted in twos and 
pointed to both decks at the same time with two fingers: “two, four, six …” and so on. 
Moreover, the children included the invisible beds as well. 
 
2.3.2 Playing dumb 
 

In the picture book Sssst! [Ssh!], the children sneak – so to speak – through a giant’s 
castle, trying not to wake him up. On pages 3 and 4 (see Figure 2), the front of the castle is 
shown from a “frog’s eye view”. After reading aloud the text in the book: “Ssh. This is the 
castle of a giant!” the teacher pretended not to understand that the size of the towers is the 
result of the point of view that was taken. After she said “Quite small towers for a giant”, 
some children reacted that the towers seem smaller than they really are because of the low 
position from which the castle is seen. One child said: “Maybe it is because it is very tall.” 
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Figure 2. Pages 3 and 4 of the book Sssst! [Ssh!]. 

 
2.3.3 Showing an inquiring expression 
 

The next picturebook is called De prinses met de lange haren [The princess with the long 
hair]. On the endpapers of the picture book the princess is depicted with a ponytail that is 
several times the length of the princess (see Figure 3). 
 

 
Figure 3. Endpapers at the beginning of the book De prinses met de lange haren 

[The princess with the long hair]. 
 

The ponytail is draped in a zigzag covering two pages. The teacher just looked amazed 
and waited for the children’s reaction. The children were impressed by the enormous length 
of the hair and followed the zigzag with their index finger as if to experience how long the 
hair is. Later on, when the teacher asked how long her hair is in reality, the children ran 
around in the gym. 
 
2.4. Our findings 
 

Before we started to analyze the data for answering the research questions, we 
investigated the psychometric properties of the PICO test, the amount of missing data, and the 
comparability of the experimental and control group. I will leave out this technical part here – 
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recently, we have submitted a full article about this study to a journal (Van den Heuvel-
Panhuizen, Robitzsch, & Elia, submitted) in which this technical part is described in detail – 
and will continue now with a short report about what we found regarding the effect of the 
book reading sessions. 
 
Table 1 
Description of the three regression models set up for analyzing the intervention effect 
Investigated effect Model 1 Model 2 Model 3 
General intervention effect 
(effect in whole sample) 

Dependent variable: 
PICO posttest 
Covariate: 
PICO pretest  

Model 1 + 
Covariates: 
Cito Mathematics 
Cito Language 

Model 2 + 
Covariates: 
Age 
Grade level 
Gender 
SES weight 
Home language 
Urbanization level 

Specific intervention effect 
(effect in subgroups) 

Dependent variable: 
PICO posttest 
Covariate 
ICO pretest 

Model 1 + 
Covariates: 
Cito Mathematics 
Cito Language 

Model 2 + 
Covariates: 
Age 
Grade level 
Gender 
SES weight 
Home language 
Urbanization level 

 
In total, we did two analyses (see Table 1): one for the effect of the picturebook reading 

program in the whole sample and one in specific subgroups, including K1 and K2 children, 
girls and boys, children with as their home language Dutch and non-Dutch, children with a 
higher and a lower SES, older and younger children, children with a high and a low PICO 
pretest score, children with a high and a low general mathematical ability and children with a 
high and a low language ability. Within each analysis we investigated three different models: 
one with only the PICO pretest as a covariate (Model 1), one with the PICO pretest, Cito 
Mathematics and Cito language as covariates (Model 2), and one with all the nine covariates. 
In all three models, the PICO posttest score is a dependent variable. 
 

The three regression models give similar results for the general intervention effect on the 
PICO posttest scores (see Table 2). Model 1 reveals a significant intervention effect, while 
Model 2, controlling for two extra covariates (Cito language and mathematics), shows a smaller 
but still nearly significant intervention effect. Here, I have to add that in the table the p-values 
for two-sided hypotheses are displayed. However, we assumed a positive effect of the 
intervention and formulated a one-sided hypothesis. This means that the criterion for 
significance can be set on .10. Finally, Model 3, which includes all nine covariates, indicates a 
significant intervention effect. 

In order to investigate the size of the general intervention effect, we calculated the 
Cohen’s d for each of the three models. For Model 1 we found an effect size d = .15, for 
Model 2 the effect size was d = .11 and for Model 3 it was d = .12. 

At first sight, this effect size is perhaps not that large, but if we look at the mean increase 
from the PICO pretest to the PICO posttest in the control group, which has an effect size of 
d = .59, then the intervention effect is worth speaking of, because the influence of the 
intervention amounts to 25% (.15/.59 = .25) of the “regular” effect size in the control group. 
In Model 2 and Model 3, the increase in effect size was respectively 19% and 20%. 
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Table 2 
Results of the regression analyses predicting PICO posttest scores for the whole sample. 
  Model 1  Model 2  Model 3 
  Ba SE β pb  B SE β p  B SE β p 
Intervention  .89 .36 .07 .01  .64 .39 .05 .11  .71 .39 .06 .07 
                
PICO Pretest  .89 .03 .84 .00  .72 .05 .67 .00  .68 .05 .64 .00 
                
Cito Mathematics       .09 .02 .20 .00  .08 .02 .18 .00 
Cito Language       .01 .03 .02 .72  .01 .03 .01 .77 
                
Grade level            .54 .66 .04 .42 
Age            .04 .04 .05 .33 
Gender            -.04 .35 .00 .90 
SES Weight            .18 .78 .01 .82 
Dutch Home Language            1.38 .61 .07 .02 
Urbanization Level            .31 .24 .04 .20 
R² (Explained Variance)  .70  .72  .73 

Cohen’s d  .15  .11  .12 
a B: unstandardized regression coefficient of the intervention effect; SE: standard error of B; β: standardized regression coefficient.  
b The p-values for two-sided hypotheses are displayed. This means that assuming a positive effect of the intervention as formulated in our 
one-sided Hypothesis 1, the significance level can be set on .10.

 
When looking at the effect of the intervention for the specific groups of children we 

found that the intervention effects for the various subgroups vary (see Table 3). 
 
Table 3 
Results of the regression analyses predicting PICO posttest scores for the whole sample. 
Specific intervention effect Model 1 Model 2 Model 3 
Grade level (K1 / K2) 
 

+ K2  
~ K1 
 

n.s. n.s. 

Gender (boy / girls) 
 

+ girls + girls + girls 

PICO pretest (low-third / mid-third / high-third) 
 

+ mid-third + mid-third + mid-third 

Cito Language (low-third / mid-third / high-third) 
 

+ low-third 
+ high third 
 

+ low-third 
+ high third 

+ low-third 

Cito Mathematics (low-third / mid-third / high-third) 
 

+ low-third n.s. n.s. 

Home language (Dutch / non Dutch) 
 

+ Dutch  + non-Dutch + non-Dutch 

Age (younger / average / older) 
 

+ older n.s. n.s. 

Socio-economic status (higher / lower) + higher n.s. n.s. 

 
Regarding grade level, the results from Model 1 indicate a significant effect for K2 and a 

nearly-significant intervention effect for K1. However, the intervention effect becomes 
insignificant when controlling for extra covariates. 

With respect to gender, all three models show a significant and relevant intervention 
effect for girls and not for boys. 

For the children who had a moderate PICO pretest score the intervention effect was significant 
and rather large in all three models. However, we did not find this for the low- and high-achieving 
children in the PICO pretest. 

With respect to the children’s language ability, we found that the children who scored 
low in the Cito language test benefited considerably from the picturebook reading program in 
all three models. For the high-scoring children the intervention was significant in Model 1 and 
Model 2. 
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The split with respect to general mathematical ability showed that the children who 
scored in the low-third range of the Cito mathematics test showed a significant effect of the 
intervention, though controlling for the covariates in Model 2 and Model 3 led to non-
significant effect sizes across the three subgroups. 

With respect to the Dutch home language subgroup we found a significant intervention 
effect in Model 1, whereas when controlling for covariates we found a significant and rather 
large intervention effect in the subgroup of non-Dutch home language. 

Regarding the subgroups of age we found in Model 1 a significant effect for the older 
children, but this disappeared in Model 2 and Model 3. 

The same was the case for the children with the higher socio-economic background. In 
Model 1 there was a significant effect, which disappeared in Model 2 and Model 3. 
 
2.5 Summary of the findings 
 
Let me summarize our findings again: 
 
2.5.1 Reading picturebooks has educational potential for kindergartners’ learning of mathematics 
 

Our study showed that a three-month picturebook reading program during which the 
teacher reads two picturebooks that contain mathematics-related content in class weekly, can 
have a positive effect on kindergartners’ mathematical understanding. In fact, an increase in 
25% more effect size between pretest and posttest in the experimental group than in the 
control group, as a result from a three-months program is quite a lot. And this is certainly the 
case when taking into account the spurt in cognitive growth children generally make at this 
age (Bowman, Donovan, & Burns, 2000), which can also be seen in the increase in 
performance of the children in the control group who received only the regular teaching. 
 
2.5.2 Reading picturebooks is an effective whole-class activity 
 

Although we found an intervention effect for the older children and K2 children, which 
might indicate that these children are more prepared to pick up the mathematical aspects in 
the picturebooks, this was only the case for Model 1. When we took into account other 
covariates, the intervention effect for age and grade level disappeared. In fact, our findings 
seem to suggest that picturebook reading sessions for supporting mathematical development 
can be effectively carried out as a whole-class activity in combined K1/K2 classes. 
 
2.5.3 Reading picturebooks is effective for children with different background characteristics 
 

We also found that reading picturebooks is effective regardless the children’s general 
mathematical ability. Moreover, it turned out to be effective both for children with a high 
language score and a low language score. For home language the findings were ambivalent. 
Without controlling for covariates the children with Dutch as their home language benefitted 
more than those who do not speak Dutch at home, whereas with controlling for covariates, the 
non-Dutch home language group gained more from the program. With respect to socio-
economic status an intervention effect was found only for the children with a higher socio-
economic status score when there was no controlling for the covariates.  

In sum, these findings indicate that reading picturebooks to kindergartners seems not to 
be effective for only particular children, such as children with high language ability or high 
mathematics ability, but for a broad range of children. 
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2.5.4 Reading picturebooks is most gainful for the mathematical development of girls 
 

Only for one background characteristic of the children we found that the picturebook 
reading was not equally beneficial: the picturebook program was clearly advantageous to girls 
even when taking into account other characteristics of the children (see Model 2 and Model 
3). Given other research findings that have revealed that girls in grade 1 sometimes already 
lag behind the mathematical development of boys (Carr & Davis, 2001; Penner & Paret, 
2008), it is a good thing to know that reading picturebooks may contribute to giving girls a 
better start in mathematics. 

 
So far what I liked to tell you about the picturebook study. To follow now is what we 

found in a study into the mathematical abilities of special education students. 
 
 

3. SPECIAL EDUCATION STUDENTS’ ABILITY TO APPLY ALTERNATIVE 
METHODS FOR SOLVING SUBTRACTION PROBLEMS 

 
As I said earlier, this study I carried out together with my PhD student Marjolijn 

Peltenburg and with Alexander Robitzsch, who is giving us support for doing the statistical 
analysis of the data. The starting point of the IMPULSE project was that in the Netherlands – 
but also in other countries – there is a strong belief in circles of special education (SE) 
educators and psychologists that students who are weak in mathematics cannot handle 
different calculation methods. The idea is that it better to teach them only one fixed method 
for each number operation because otherwise they get confused. 
 
3.1 Background of the study 
 
3.1.1 RME not suitable for SE students? 
 

Since the development of “Realistic Mathematics Education” SE educators and 
psychologists have been reserved towards implementing this approach to mathematics 
education in SE. In fact, the principles of RME are considered to be too difficult for students 
in SE. First of all, presenting problems in context, which, by the way, was often incorrectly 
operationalized as presenting wordy word problems, is not acknowledged as being of help. 
Using contexts is judged as too complex for these students, and therefore educators tell 
teachers in SE to focus on bare number problems. Another principle of RME is to build from 
children’s informal knowledge. Again, this approach is not seen as very beneficial, because of 
the assumption that SE students are not able to, or at least have difficulties to, generate 
informal solutions on their own; see, for example, the warning in a publication by Gelderblom 
(2008, p. 36) that “letting students who are weak in mathematics to discover strategies 
themselves is fatal”). A third principle of RME that is connected to the two foregoing is that 
of progressive schematization, which SE educators and psychologists often see as a detour, 
because they think it is better to teach children directly at a formal level. A fourth principle of 
RME is to make students’ aware of choosing an appropriate solution method. This approach 
is rejected because – as I said already – varying a solution method is considered to be 
confusing for SE students. Finally, RME stimulates reflection on solution methods and having 
class discussions about different ways of solving problems to deepen the children’s 
understanding. Again, this fifth principle of RME is also not regarded as helpful for weak 
learners in mathematics. 
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3.1.2 Teaching only one fixed method? 
 

The focus in the study presented here was on whether to teach SE students only one fixed 
method or not. To avoid difficulties for SE students the general advice of SE educators given 
to SE teachers is to keep it simple and teach weak students in mathematics only one fixed 
method. For example, in a summary of Timmermans’ (2005) thesis (see 
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6HKFLE), it is stated: “Weak performing 
students in arithmetic […] attain better results with the traditional approach in which they 
learn to solve number problems in one particular way” (translated from Dutch). Similar 
advice is given to SE teachers based on Milo’s (2003) thesis (see 
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5LEJNJ): “[P]upils at special schools for 
primary education can best learn arithmetic using one specific strategy.” In addition, similar 
voices are also heard outside the Netherlands. For example, the U.S. National Mathematics 
Advisory Panel (2008) also suggests, that students who are weak in mathematics would 
benefit from being taught one prescribed way of solving calculations. 

However, one may wonder whether this is good advice, because the idea of teaching only 
one method goes against the goal of developing numeracy in students. Being numerate 
implies that students should be able to choose a suitable method when solving number 
problems (Treffers, 1989; Van den Heuvel-Panhuizen, 2001; Warry, Galbraith, Carss, Grice, 
& Endean, 1992). A further objection against the one-method approach is that if students have 
to restrict themselves to only one way of solving problems, many problems would require an 
unnecessarily long solution path (see, e.g., Torbeyns, De Smedt, Stassens, Ghesquière, & 
Verschaffel, 2009). Moreover, if students have to use prescribed methods, this can lead to 
“didactical ballast” (Van den Heuvel-Panhuizen, 1986) for them. It can be a source of error 
for students because such prescribed methods are not grounded in the students’ own thinking, 
i.e., the ownership is completely on the side of the teacher or textbook author. 

Based on the foregoing arguments, one might decide to teach even students who are weak 
in mathematics the flexible use of solution methods. However, the critical point for making 
this decision is whether SE students are able to operate in such a flexible way. Therefore, we 
decided to investigate this. Our focus is on subtraction problems up to 100, because these 
problems are found to be very difficult for SE students (Kraemer, Van der Schoot, & Van 
Rijn, 2009). 
 
3.1.3 Strategies and procedures for solving subtraction problems up to 100 
 

Generally, three different types of strategies can be distinguished for solving subtraction 
problems with numbers up to 100: splitting, stringing, and varying (Van den Heuvel-
Panhuizen, 2001). Although researchers do not always use the same wording – for example, 
other expressions can be found in Klein, Beishuizen, & Treffers (1998) – there is broad 
agreement about the general meaning of these strategies: in splitting, both numbers are 
decomposed in tens and ones; in stringing, one number is kept as a whole number; and in 
varying, one or both numbers are changed in order to get an easier problem. 

Torbeyns, De Smedt, Stassens, Ghesquière, & Verschaffel (2009) describe subtraction in 
a different way. They distinguish (1) direct subtraction (DS), which means taking away the 
subtrahend from the minuend; (2) indirect addition (IA), which means adding on from the 
subtrahend until the minuend is reached; and finally a less common procedure called indirect 
subtraction (IS), which means taking away from the minuend until the subtrahend is reached. 
According to Torbeyns, De Smedt, Stassens, Ghesquière, & Verschaffel (2009), splitting, 
stringing, and varying belong to the class of DS procedures, whereas IA is considered as a 
separate class of procedures which do not fit to the three strategies. 
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However, we see this differently. Splitting, stringing, and varying can be considered 
strategies which all describe how we deal with the numbers involved: either splitting numbers, 
or keeping one number as a whole number, or changing one or both numbers. In contrast to 
these strategies, we can label DS, IA, IS as procedures which describe how the operation is 
carried out: (DS) taking away the subtrahend from the minuend, (IA) adding on from the 
subtrahend until the minuend is reached and (IS) decreasing the minuend until the subtrahend is 
reached, and finally (MO) using multiple operations (see Figure 4). 

Although integrating the two existing ways to describe how to solve subtractions up to 
100 was never the intention of this study, it emerged when thinking about how to code the 
students’ solution methods. 
 

 
Figure 4. Relation between procedures and strategies illustrated with problems 

 
Suddenly, it was clear that the splitting, stringing, and varying strategies and the DS, IA, 

IS, and MO procedures complement each other. Together, they offer a complete framework 
for describing how students solve subtractions up to 100. 

Thinking about a news alert, this finding might also deserve such a notification. Like with 
other remarkable findings, one may wonder why nobody else came up with this integration of 
methods before. It looks so obvious. Therefore it is no wonder that after the scheme was 
presented at a conference, it very quickly – although somewhat adapted – found its way in 
another publication; unfortunately without any reference. 
 
3.1.4 Solving subtraction problems by indirect addition 
 

Back to the focus of our study. Connected to the debate about whether or not teaching SE 
students one fixed method for solving number problems that was described earlier, there is 
also controversy on whether SE students should be taught IA to solve, for example, a problem 
like 62–58 by calculating 58+2=60, 60+2=62, so the answer is 4 or that they should be taught 
to calculate 62–50=12; 12–2=10 and finally 10–6=4. Existing research findings are not clear 
about it. 
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For example, a few recent intervention studies concluded that even students in regular 
primary education hardly ever use IA to solve subtraction problems (Torbeyns, De Smedt, 
Ghesquière, & Verschaffel, 2009; De Smedt, Torbeyns, Stassens, Ghesquière, & Verschaffel, 
2010). However, these studies are challenged by other intervention studies that support the 
claim that already in the first grades of primary mathematics education, students with a wide 
range of mathematical abilities can learn to solve flexible subtraction problems by applying 
IA (Klein, Beishuizen, & Treffers, 1998; Menne, 2001). 
 
3.1.5 Factors influencing students’ procedure use 
 
The next question is what factors may influence the use of IA. 
 

Numbers involved 
Several studies (e.g., Menne, 2001; Torbeyns, De Smedt, Stassens, Ghesquière, & 

Verschaffel, 2009) have indicated that subtraction problems that require crossing the ten and 
that have a small difference between the minuend and subtrahend, for example, 62–58 may 
evoke the use of IA. However, IA could also be an efficient procedure for solving large-
difference subtraction problems with a relatively small difference around the tens and 
requiring crossing the ten (Torbeyns, De Smedt, Stassens, Ghesquière, & Verschaffel, 2009). 
For example, 82–29 may be easily solved by IA. Finally, research suggested that small-
difference problems that do not require crossing the ten, for example, 47–43 may also evoke 
the use of IA (Gravemeijer et al., 1993). 

 
Problem format 
The problem format may also play a role. Several studies (e.g., De Smedt et al., 2010; 

Van den Heuvel-Panhuizen, 1996) revealed that bare number problems hardly evoke the use 
of IA. Context problems, on the contrary, have the possibility to open up both interpretations 
of subtraction, taking away and determining the difference (Van den Heuvel-Panhuizen, 
2005; Van den Heuvel-Panhuizen &Treffers, 2009). The latter may be evoked by “adding on” 
contexts. 
 
3.2 Set up of the study 
 
3.2.1 Research questions 
 
In our study we intended to answer the following research questions: 

1. Can SE students make spontaneous use of IA for solving subtraction problems up to 
100, and which conditions influence the use of IA? 

2. Does the use of IA help SE students to solve subtraction problems up to 100 
successfully, and under which conditions does IA use lead to successful problem 
solving? 

 
3.2.2 Method 
 

Participants 
In total, 56 students from fourteen second-grade classes in three Dutch SE schools 

participated in the study. The participating students were 8-12 years old, with an average age 
of 10 years and 6 months (SD=10.4 months). This means that the students in our study were 1 
to 4 years behind in mathematics compared to their peers in regular primary school. 
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The students’ general mathematical ability level was established with the Cito Monitoring 
Test for Mathematics End Grade 2 (Janssen, Scheltens & Kraemer, 2005). Our students had 
score that ranged from 32 to 56 with an average of 47.8 (SD=6.8) while their second-grade 
peers in regular primary education have an average ability score of 56.4 (SD=14.6). 
 

Instruments 
To assess the students’ ability in solving subtraction problems we developed an ICT-

based Subtraction test, consisting of fifteen items. Furthermore, we developed an online 
teacher questionnaire with which we collected data about the students’ prior instruction on 
subtraction problems. 

In the ICT-based Subtraction test, the item characteristics were varied systematically over 
the fifteen items. These characteristics include number characteristics and format 
characteristics (see Table 4). The number characteristics refer to the size of the difference 
between the minuend and subtrahend, whether the tens have to be crossed and whether or not 
the minuend and the subtrahend are close to a ten. The format characteristics refer to whether 
or not the items are presented as a bare number problem (BN) or as a context problem. The 
latter can describe a taking-away situation (ConTA) or an adding-on situation (ConAO). The 
following item is an example of a ConAO item (Figure 5). 
 
Table 4 
Different types of subtraction items in ICT-assessment 
 Number characteristics  Format characteristics  

 Difference Crossing 
the ten 

Both numbers 
close to ten 

Example  Bare number Context Total 

  
Taking 
away 

Adding 
on 

      Number of items  

A Small (<7) No  No 56-52  1 1 1 3 

B Small (<7) Yes  Yes 31-29  1 1 1 3 
C Large (>11) Yes Yes 51-39  1 1 1 3 

D Large (>11) No No 47-15  1 1 1 3 
E Large (>11) Yes No 57-28  1 1 1 3 

Total      5 5 5 15 

 

 
Figure 5. Album item; the accompanying read aloud instruction is: 

“The album has space for 51 cards. 49 are already included. How many more cards can be added?” 
 

The fifteen items were displayed one per screen. The students could click to continue to 
the next item. The accompanying text was read out by the computer. By clicking on the ear 
button, the student could hear the spoken text again. After a short introduction, the students 
worked individually on a touch-screen notebook. Students were told that they were free to 
choose any solution method. After filling in an answer, they reported verbally how they found 
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this answer. The students’ on-screen work was recorded by Camtasia Studio software. All 
students and their parents gave their permission for collecting these records. 
 

Data analysis 
I will not go in detail now with respect to the analysis, but will continue with the results. 

More details can be found in our article in Educational Studies in Mathematics (Peltenburg, 
Van den Heuvel-Panhuizen, in press; DOI 10.1007/s10649-011-9351-0). 
 
3.3 Our findings 
 
3.3.1 SE students’ spontaneous IA use 
 

The data analysis was based on the cases in which the students gave an answer to a 
particular item. Of the 768 cases that could be analyzed, DS was used in 63% of the cases and 
IA was used in 34% of the cases. Of the fifteen subtraction problems, the total number of 
items in which the students applied IA ranged from 0 to 8 items (M=4.6 and SD=1.9). 

 
Numbers involved and IA use 
The following diagram (Figure 6) shows that IA was most frequently applied in small-

difference problems without and with crossing the ten (categories A and B, respectively). A 
(single-level) logistic regression analysis showed a significant more frequent use of IA in A 
and B than in C, D, and E (B=1.24, SE=.16, p< .05). 

 
                                        (56–52)       (31–29)        (51–39)        (47–15)        (56–28) 

Figure 6. Percentage of procedure use related to number characteristics of the items 
 

Problem format and IA use 
The next diagram (see Figure 7) shows that IA mainly appeared in the items with an 

adding-on context (ConAO) and that DS was most often used in items with a taking-away 
context (ConTA). A logistic regression analysis showed a significant difference in IA use 
between context and bare number problems (B=2.38, SE=.25, p< .05). 
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Figure 7. Percentage of procedure use related to the problem format 

 
Prior instruction and IA use 
The teachers’ responses to the online questionnaire revealed that only three teachers 

taught both DS and IA. The sixteen students of these teachers applied IA in 29% of the total 
of 209 cases. The other 40 students who were not taught IA applied this procedure in 36% of 
the total of 559 cases. 
 
3.3.2 Multilevel analysis with IA use as dependent variable 
 

To examine the influence of the different conditions on IA use, we carried out a cross-
classified multilevel analysis which revealed that the IA use is mainly an item characteristic 
(see Figure 8). The large SD (2.83) of the random item effect in Model 0 (that means the 
model without predictors) compared to the SD (.93) of the random student effect indicates 
that the application of IA is elicited by the nature of an item rather than by the specific 
preference of a student. Thus, students seemed to apply IA in a flexible, item-specific way. 
The SD (.41) of the random teacher effect is also small compared to the SD of the item effect. 
Nevertheless, it should be noted that there is a substantial variation between teachers whose 
instruction might have consequences for students’ IA use. 

In the cross-classified logistic multilevel analysis for Model 1, it was controlled for 
predictors at item level (numbers involved, problem format), student level (Cito ability score, 
gender), and teacher/class level (IA taught). In this Model 1, the SD (1.19) of the item effect 
was smaller than in Model 0, while the SD (.99) of the student effect and the SD (.44) of the 
teacher effect were the same as in Model 0 when there was no controlling for predictors. 

CASES
Adding on (or not)

Model 0: SD=.41
Model 1: SD=.44

Model 0: SD=.93
Model 1: SD=.99

Model 0: SD=2.83
Model 1: SD=1.19

• Gender
• Cito ability score

• IA taught

• Numbers involved:
less often IA in D* and E* 
compared to in B 

• Problem format:
Adding on context* 
compared to BN

* p<.05

students

items

teachers/classes

 
Figure 8. Results from cross-classified logistic multilevel regression analysis with IA use as dependent variable 
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At item level, for the predictor numbers involved we found that IA was significantly less 

applied for the items belonging to the categories D (47–15) (B=–3.35, SE=1.26, p<.05) and E 
(56–28) (B=–2.98, SE=1.17, p< .05) than for the items belonging to category B (31–29). 

With respect to the problem format, we found that IA was significantly more often 
applied for items that involve a context problem that reflects adding on (ConAO) than for BN 
problems (B=4.74, SE=.93, p< .05). Such a significant difference was not found between 
items that involve context problems that reflect taking away (ConTA) and BN problems 
(B=1.42, SE= .99, p> .05). Furthermore, we found that there was a significant difference in IA 
use between the two types of context problems: ConAO and ConTA (B=3.33, SE= .86, 
p< .05). 

When examining whether there is a difference in IA use between context problems 
(ConAO and ConTA) and BN problems, we found that IA was significantly more used in 
context problems (B=3.08, SE= .86, p< .05). 
 

At student level, neither gender (B=.44, SE=.41, p> .05) nor the Cito ability score (B=–
.01, SE= .03, p> .05) turned out to be a significant predictor for IA use. 

At teacher level, we found that despite the variation between the teachers, the variable IA 
taught (B=–.44, SE= .55, p> .05) is not significant for IA use. 
 
3.3.3 Findings with respect to success rate 
 

Overall success rate 
Of the fifteen subtraction problems, the students solved between one and fourteen items 

correctly (M=7.7, SD=3.5). In 68% of the 260 cases in which IA was applied and in 51% of 
the 480 cases in which DS was applied, the students’ answers were correct. A logistic 
regression analysis showed that the higher success rate when using IA was significant 
(B= .82, SE= .17, p< .05). 
 

Specific success rate for numbers involved 
For items in category B, we found that the students’ success rate was 87% when using 

IA, whereas it was 39% when using DS. However, for items in the category D (47–15) and E 
(56–28) we found respectively a difference of 11 and 4 percentage points between IA and DS 
in the advantage of DS. A logistic regression analysis showed that this difference in success 
rate between IA and DS for the different categories of numbers involved appeared to be 
significant (B=2.64, SE= .56, p< .05). 

 
Specific success rate and prior instruction  
The students who had received IA instruction correctly solved 77% of the 61 total cases 

for which they used IA. The students who did not receive IA instruction correctly solved 67% 
of the 199 total cases in which they applied IA. The difference in these percentages did not 
appear to be significant (B= .55, SE= .34, p> .05). 
 

Multilevel analysis with success rate as dependent variable 
To examine the influence of the different conditions on IA use, we carried out a cross-

classified multilevel analysis which revealed that the success rate is mainly a student 
characteristic (see Figure 9). The SD (1.20) of the random student effect in Model 0 (without 
predictors) is larger than the SD (1.12) of the random item effect. This indicates that correctly 
solving an item is more student-related than item-related. In addition, the SD (.31) of the 
random teacher effect is quite small compared to the SD at the item level. 
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In Model 1, with the predictors included, the SD (1.07) of the student effect is smaller 
than in Model 0 and the same was found for the SD of the student and teacher effects. 

 

Model 0: SD=.31
Model 1: SD=.26

Model 0: SD=1.20
Model 1: SD=1.07

Model 0: SD=1.12
Model 1: SD=.53

• Gender
• Citoability score*

• IA taught

• Numbers involved:
C* and E* more difficult than B;
IA most successful in B*

• Problem format:
no difference CON ‐ BN

* p<.05

CASES
correct

(or incorrect)

students

items

teachers/classes

• Adding on + stringing*
• Stringing*

 
Figure 9. Results from cross-classified logistic multilevel regression analysis with success rate as dependent 

variable 
 
At case level we found with respect to procedure use, that IA use on its own did not 

significantly predict success rate (B= –.40, SE= .52, p> .05). However, there was a significant 
and large effect of simultaneous IA use and stringing (B=1.17, SE= .55, p< .05). In fact, this 
combined use was the best predictor of reaching a correct answer. Furthermore, stringing on 
its own had also a significant effect on success rate (B= .72, SE= .28, p< .05). 

At item level we found that the items belonging to the numbers involved categories C 
(51–39) (B=–1.39, SE= .52, p< .05) and E (56–28) (B=–1.30, SE= .55, p< .05) are 
significantly more difficult than items of category B (31–29). An additional analysis revealed 
that IA use is most successful when it is applied in small-difference problems with crossing 
the ten (category B) compared with all the other categories of numbers involved. Concerning 
correctness and problem format, we found that both types of context problems (ConAO and 
ConTA) did not significantly differ from the BN problems (B= .36, SE= .43, p> .05 and 
B= .05, SE= .45, p> .05 respectively). 

At student level we found that students’ success rate was positively related to the general 
mathematics ability (B=.12, SE= .03, p< .05), however, this was not the case for gender (B=–
.20, SE= .39, p> .05).  

Finally, at teacher level we found that IA taught was not a significant predictor of success 
rate (B= –.09, SE= .44, p> .05). 
 
3.4 Summary of the findings 
 

Our study showed that SE students: 
• are able to use IA spontaneously to solve subtraction problems 
• are rather flexible in applying IA to solve subtraction problems 
• are quite successful when solving subtraction problems by IA 

 
Again, I think these three main findings are reasons enough for a news alert. In addition, 

our study also revealed another essential lesson for teaching mathematics, namely the power 
teachers have by cleverly choosing particular problems. By intentionally including problems 
with specific characteristics, teachers can steer the learning process of their students. As our 
study has shown, the item characteristics – the numbers involved and the problem format – 
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were the main prompt for the students to use IA. Students mainly applied IA in small-
difference problems with crossing the ten and most frequently employed IA in context 
problems that reflect adding on. This means that by offering students these kinds of problems, 
IA can be elicited “spontaneously” and then this student-generated method can be discussed 
in class to support a more general use of it in other problems that are also suited for this 
method. 

This steering function of the problems also applies to assessment. Our findings made it 
clear that sensitive assessment tools, including test items designed with particular format and 
number characteristics enabled us to make visible, which some other studies could not make 
visible, namely that SE students are able to use IA. 
 

A further finding that emerged from our study is the new mathematics-didactical structure 
of the constitutive content elements of subtraction up to 100 for analyzing student work and 
designing learning-teaching scenarios. Contrary to formerly used distinctions in methods for 
solving subtraction problems in which only one perspective is taken (mostly that of splitting, 
stringing, and varying) or in which splitting, stringing, and varying belong to the class of DS 
procedures, whereas IA is considered as a separate class of procedures which do not fit the three 
strategies, our new structure clearly distinguishes and integrates the two perspectives of the 
operations carried out (DS, IA, IS, and MO) and the way of dealing with the numbers 
(splitting, stringing, and varying). I think this new structure gives us a deeper understanding 
of the constitutive content elements of subtraction. This understanding is important for getting a 
better grip on the didactical ingredients that are necessary to support the learning processes of 
our students. Coding the students’ responses according to these two perspectives allowed us to 
find that the best predictor of a correct answer is the combination of IA and stringing. 
 

Of course, our study also has its limitations, so our results should be handled with care. 
Nevertheless, our findings showed that SE students are able to use IA. Providing evidence for 
this was the main goal of the study. 
 
 

4. CONCLUDING REMARKS 
 

A further warning to conclude. My plea for education research that brings us more 
breaking news is not an appeal for quick and dirty research. My plea is not to support the 
trend in psychological research towards a bit-size science that goes together with short and 
rapid publications resulting from the increased pressure on researchers to produce quantifiable 
output (Bertami & Munafò, 2012). Although shorter and quicker published articles may lead 
to a wider dissemination – even beyond the borders of a discipline – and will stimulate 
debates about the findings and a more active involvement of researchers, professionals and 
the general audience in the topic, I think that education research, like psychological research, 
is better off when there is what Ledgerwood and Sherman (2012) – in the same issue of 
Perspectives on Psychological Science call – a balance between the “hare” and the “tortoise” 
approach. In this latter approach, our understanding of a particular topic can steadily grow 
more slowly, which may avoid that we draw invalid conclusions, because there is more time 
to include more aspects of the topic under investigation, and to create a better theoretical 
integration. 

The breaking news I am pleading for implies that our studies about mathematics and 
science education should end up with clear results. Researchers should always ask themselves 
what new understanding their study brought. Did anything emerge that every teacher should 
know? The key for revealing important knowledge is, of course, the quality of the study. 
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Badly conducted research can never result in something that is worthwhile to know. This 
means having good instruments for data collection and having good methods for analyzing 
the data. However, in my view the real key to get something valuable out is starting with good 
research questions. In fact, they form the midpoint of a sandglass in which previous empirical 
research findings and the underlying theoretical concepts come together in new queries to be 
solved and from which new data are collected and analyzed. After finding the results they can 
be disseminated, but that again is a real challenge. 

It is generally acknowledged that it is not easy to reach the classroom with research 
findings. Although there are many reasons for this which I cannot elaborate on now, I read in 
Kaestle’s (1993) article in Educational Researcher an interesting thought that gave me some 
thinking. In this article in which Kaestle discusses the “awful reputation of education 
research”, he interviewed Raizen, a director of a center for improving science education, who 
contrasted scientists with school teachers. The first are, according to her, information-seeking 
while the second are not. They only have to teach their students the knowledge they have. To 
change this situation Raizen argued for transforming schools into learning communities of 
teachers. I like to add to this: Breaking news from education research might be helpful as 
well. It can help to make teachers curious and trigger a knowledge-seeking attitude in them. 

Moreover, in that same article (Kaestle, 1993, p. 27), I also read that “[t]eachers need, ‘as 
part of their pre-service education, to become sophisticated consumers of education research 
and development’.” Is this not the same that Svend Pedersen was pleading for? 
Thank you. 
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