Kurslitteratur                                 

för kurs på avancerad nivå

Matematikämnets didaktik A, 7,5 hp

Kurskod: UM8028

Gäller från: HT 2017

Fastställd: 2015-04-21, reviderad: 2017-05-08

Institution: Institutionen för matematikämnets och naturvetenskapsämnenas didaktik

Ämne: Matematikämnets didaktik

 

Obligatorisk kurslitteratur

Andrews, P., & Rowland, T. (red.) (2014). Masterclass in mathematics education: International perspectives on teaching and learning. London: Bloomsbury Publishing.
(Valda delar om ca 80s)

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151. (13s) NY

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. Coxford (Ed.), Ideas of algebra: K-12 (pp.8-19). Reston, VA: National Council of Teachers of Mathematics. (12s)

Watson, A. (2007). Algebraic reasoning. In T. Nunes, P. Bryant, & A. Watson (Eds.), Key understandings in mathematics learning (paper 6). London: The Nuffield Foundation. (43s)
Finns som elektronisk resurs.

Aktuella artiklar om ca 50 sidor. Väljs i samråd med kurslärare.

Valbar kurslitteratur

Dessutom väljs minst tolv artiklar av nedanstående.

Anghileri, J., Beishuizen, M., & van Putten, K. (2002). From informal strategies to structured procedures: mind the gap! Educational Studies in Mathematics, 49, 149-170. (21s)

Balacheff, N. (2002). The researcher epistemology: a deadlock for educational research on proof. In F. C. Lin (Ed.), Proceedings of the 2002 International Conference on Mathematics: understanding proving and proving to understand (pp. 23-44). Taipei, Taiwan: NSC and NTNU. (22s)
www.tpp.umassd.edu/proofcolloquium07/reading/Balachef_Taiwan2002.pdf

Beishuizen, M., & Angheleri, J. (1998). Which mental strategies in the early number curriculum? A comparison of British ideas and Dutch views. British Education Research Journal, 24, 519-538. (20s)

Brown, M., Küchemann, D., & Hodgen, J. (2010). The struggle to achieve multiplicative reasoning 11-14. In M. Joubert & P. Andrews (Eds.), Proceedings of the 7th British Congress for Mathematics Education (BCME7) (pp. 49-56). University of Manchester. (8s)
www.bsrlm.org.uk/IPs/ip30-1/BSRLM-IP-30-1-07.pdf

Carpenter, T., & Moser, J. (1984). The acquisition of addition and subtraction concepts in grade one through three. Journal for Research in Mathematics Education, 15(3), 179-202.

Dewolf, T., Van Dooren, W., & Verschaffel, L. (2011). Upper elementary school children’s understanding and solution of a quantitative problem inside and outside the mathematics class. Learning and Instruction, 21, 770-780. (11s)

Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? An exploratory research study. Educational Studies in Mathematics, 15(1), 1-24. (24s)

Gutiérrez, A. (1996). Visualisation in 3-dimentional geometry: in search of a framework. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th International Group for the Psychology of Mathematics Education, Vol. 1 (pp. 3-19). Valencia, Spain: PME. (17s)
www.uv.es/angel.gutierrez/archivos1/textospdf/Gut96c.pdf

Gutiérrez, A., & Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20(2/3), 27-46. (20s)
www.uv.es/angel.gutierrez/archivos1/textospdf/GutJai98.pdf

Hersh, R. (1995). Fresh breezes in the philosophy of mathematics. American Mathematical Monthly, 102(7), 589-594. (6s)

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: the case of mathematics. Educational Researcher, 25(4), 12-21. (10s)

Pratt, D., & Noss, R. (2002). The micro-evolution of mathematical knowledge: the case of randomness. Journal of the Learning Sciences, 11(4), 453-488. (36s)

Presmeg, N. C. (1986). Visualization in high school mathematics. For the Learning of Mathematics, 6(3), 42-46. (5s)

Schoenfeld, A. (1983). Beyond the purely cognitive: belief systems, social cognitions, and metacognition as driving forces in intellectual performance. Cognitive Science, 7, 329-363. (35s)

Sowder, L. & Harel, G. (1998). Types of students’ justifications. Mathematics Teacher, 91, 670-675. (6s)

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal of Research in Mathematics Education, 38(3), 289-321. (33s)

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal of Research in Mathematics Education, 40(3), 314-352. (39s)

Thompson, A. G. (1984). The relationship between teachers’ conceptions of mathematics and mathematics teaching to instructional practice. Educational Studies in Mathematics, 15(2), 105-127. (23s)

Tversky, A., & Kahneman, D. (1975). Judgement under uncertainty: heuristics and biases. Science, 185, 1124-1131. (8s)

Verschaffel, L., De Corte, E., lasure, S., Van Vaerenbergh, G., Bogaerts, H. & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1(3), 195-229. (36s)

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Dordrecht: Kluwer. (17s)